DARPA Focus 2000

Computing in the Bio-Substrate

Harley McAdams, Stanford mcadams@cmgm.stanford.edu

Tom Knight, MIT tk@ai.mit.edu

David O'Reilly, Iconix oreilly@onebox.com

Computing in the Bio-Substrate

- Custom control circuits in living cells
 - Switches and switching networks
 - Biosensors and biocontrol circuits
 - Design methodologies
 - Robustness and reliability
 - Simulation tools and methodologies
- Hybrid bio-electronic circuits and sensors
 - Cells on chips
 - Electronic I/O to biological substrates
- Self-assembly
 - Ordered nano-structures
 - DNA computation

Opportunities

Microbiological bio-sensors

- Capable of sensing external biological molecules and other signals
- Custom logic for modulating responses
- Conditional genetic response
- Real-time or delayed read-out
- Integrated biological/silicon sensors (biomicroelectronics)
- Potential for multicellular collaborative sensors

Potential new class of sensors with molecular-level specificity and sensitivity

- Lightweight deployable
- Low-cost
- Programmable

Naturally occurring Sensors and Actuators

Sensors

- Light (various colors)
- pH
- Molecules
 - autoinducers
 - H2S
 - Maltose
 - Serine
 - Ribose
 - cAMP
 - NO
- Internal State
 - Cell cycle
 - Heat shock
- Chemical & ionic potentials
- Magnetic & electric fields

Responses

- Motility
 - flagellar activity
 - gliding motion
- Light (various colors)
- Fluorescence
- Small molecule excretion
- Membrane transport
- Sporulation
- Cell cycle progression
- Exported proteins
 - enzymes/toxins
 - extracellular matrix
- Cell death

Opportunities

Innovative design and modeling tools for designing custom biological circuits and analysis of naturally occurring circuits

 Next generation of BioSpice (mixed mode, stochastic and deterministic models, hierarchical models)

Barrier to progress in several areas

Opportunities

Programmable, self-assembling, high-precision (± 0.5 nm) 2D and 3D periodic and aperiodic crystalline structures from branched DNA molecules with <10 nm feature sizes

- Macromolecular crystallization for structure determination
- Templates for nanoelectronics
- Nano-manufacturing substrate

Enabler for self assembled molecular structures needed for a next generation electronics